References
1. Ghajar J. Traumatic brain injury. Lancet. 2000;356(9233):923-9. http://doi.org/10.1016/S0140-6736(00)02689-1. PMid:11036909.
2. Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637-40. http://doi.org/10.1016/j.apmr.2010.05.017. PMid:21044706.
3. Ferreira AMM, Santos JS, Marim AA, et al. Prognostic value of serum creatinine in traumatic brain injury. J Bras Neurocir. 2021;32(3):229-41. http://doi.org/10.22290/jbnc.v32i3.1976.
4. Kamp MA, Tahsim-Oglou Y, Steiger HJ, Hänggi D. Traumatic brain injuries in the ancient Egypt: insights from the Edwin Smith Papyrus. J Neurol Surg A Cent Eur Neurosurg. 2012;73(4):230-7. http://doi. org/10.1055/s-0032-1313635. PMid:22271381.
5. Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 2020;104(2):213-38. http://doi.org/10.1016/j. mcna.2019.11.001. PMid:32035565.
6. Magalhães ALG, de Souza L, Faleiro RM, Teixeira AL, Miranda A. Epidemiology of traumatic brain injury in Brazil. Rev Bras Neurol. 2017;53(2):15-22. http://doi.org/10.1590/0004-282x-anp-2021-0035. PMid:35476074.
7. Fernandes RNR, Silva M. Epidemiology of traumatic brain injury in Brazil. Braz Neurosurg. 2013;32(3):136-42. http://doi. org/10.1055/s-0038-1626005.
8. Almeida CER, Sousa JL Fo, Dourado JC, Gontijo PAM, Dellaretti MA, Costa BS. Traumatic brain injury epidemiology in Brazil. World Neurosurg. 2016;87:540-7. http://doi.org/10.1016/j.wneu.2015.10.020. PMid:26485419.
9. Peterson AB, Zhou H, Thomas KE. Disparities in traumatic brain injury-related deaths: united States, 2020. J Safety Res. 2022;83:419-26. http://doi.org/10.1016/j.jsr.2022.10.001. PMid:36481035.
10. Brazinova A, Rehorcikova V, Taylor MS, et al. Epidemiology of traumatic brain injury in europe: a living systematic review. J Neurotrauma. 2021;38(10):1411-40. http://doi.org/10.1089/ neu.2015.4126. PMid:26537996.
11. Tomar GS, Singh GP, Lahkar D, et al. New biomarkers in brain trauma. Clin Chim Acta. 2018;487:325-9. http://doi.org/10.1016/j. cca.2018.10.025. PMid:30342876.
12. Albano C, Comandante L, Nolan S. Innovations in the management of cerebral injury. Crit Care Nurs Q. 2005;28(2):135-49. http://doi. org/10.1097/00002727-200504000-00006. PMid:15875444.
13. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12. http://doi.org/10.1609/aimag. v27i4.1904.
14. Rosenblatt F. The perceptron, a perceiving and recognizing automaton Project Para. Buffalo: Cornell Aeronautical Laboratory; 1957.
15. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. http://doi.org/10.1038/nature14539. PMid:26017442.
16. Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol. 2008;26(9):1011-3. http://doi.org/10.1038/nbt0908-1011. PMid:18779814.
17. Correia MM. Perfil do traumatismo cranioencefálico e sua associação prognóstica com a dosagem sérica de creatinina à admissão [dissertação]. Uberaba: Universidade Federal do Triângulo Mineiro; 2019. Available from: http://bdtd.uftm.edu.br/handle/tede/843. Accessed: 5/3/2024.
18. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57. http://doi.org/10.1613/jair.953.
19. Han H, Wang WY, Mao BH. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang DS, Zhang XP, Huang GB, editors. Advances in intelligent computing. Berlin: Springer; 2005. p. 878-87. (Lecture Notes in Computer Science; vol. 3644). http://doi.org/10.1007/11538059_91.
20. Tomek I. Two modifications of CNN. IEEE Trans Syst Man Cybern. 1976;6(11):769-72. http://doi.org/10.1109/TSMC.1976.4309452.
21. Mani I, Zhang I. kNN approach to unbalanced data distributions: a case study involving information extraction. Proceedings of Workshop on Learning from Imbalanced Datasets; 2003; Washington, D.C. Ottawa, ON: University of Ottawa; 2003. p. 1-7. (vol. 126). Available from: https://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf. Accessed: 5/3/2024.
22. Lööv S. Comparison of undersampling methods for prediction of casting defects based on process parameters [thesis]. Uppsala: Uppsala University; 2021. Available from: https://www.diva-portal.org/smash/ record.jsf?pid=diva2:1597599. Accessed: 5/3/2024.
23. Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. 2004;6(1):20-9. http://doi.org/10.1145/1007730.1007735.
24. Batista GE, Bazzan AL, Monard MC. Balancing training data for automated annotation of keywords: a case study. Wob. 2003;3:10-8.
25. John Lu ZQ. The elements of statistical learning: data mining, inference, and prediction. J R Stat Soc Ser A Stat Soc. 2010;173(3):693- 4. http://doi.org/10.1111/j.1467-985X.2010.00646_6.x.
26. Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192. http://doi.org/10.1371/journal.pone.0207192. PMid:30412613.
27. Mohd Noor NSE, Ibrahim H. Predicting outcomes in patients with traumatic brain injury using machine learning models. In: Jamaludin Z, Ali Mokhtar MN, editors. intelligent manufacturing and mechatronics. Singapore: Springer; 2020. p. 12-20. http://doi.org/10.1007/978-981- 13-9539-0_2.
28. Courville E, Kazim SF, Vellek J, et al. Machine learning algorithms for predicting outcomes of traumatic brain injury: a systematic review and meta-analysis. Surg Neurol Int. 2023;14:262. http://doi.org/10.25259/ SNI_312_2023. PMid:37560584.