REVIEW

Overdrainage in Hydrocephalus: causes, treatment, and prevention - a systematic review

Hiperdrenagem Liquórica na Hidrocefalia: causas, tratamento e prevenção – uma revisão sistemática

  • Luiz Gabriel Gonçalves Cherain (1)
  • Carollayne Mendonça Rocha (2)
  • Giselle Coelho (3)
  • Angelo Luiz Maset (4)
  • Nícollas Nunes Rabelo5 (5)
  Views: 401
  Downloads: 33

Resumo

Desde 1956, numerosos dispositivos de derivação foram projetados para tratar a hidrocefalia. Consequentemente, a hiperdrenagem liquórica surgiu como uma complicação grave que predispõe a outras doenças. Esta revisão tem como objetivo descrever os fatores associados à hiperdrenagem e analisar as principais intervenções utilizadas no tratamento e prevenção desta complicação. Os artigos das bases de dados PubMed, BVS, Scielo, EMBASE, SCOPUS, Cochrane e Web of Science foram selecionados usando como termos “overdrainage”, “complications”, “hydrocephalus”, “valves”, “treatment” e “neurosurgery”. Após aplicar todos os critérios de exclusão, 19 artigos foram incluídos. Em um estudo com válvulas de pressão diferencial programável e a hiperdrenagem foi relatada em 26,6% dos pacientes, mostrando melhora nos sintomas em 87,5% dos casos após reajuste de pressão das válvulas. Nas válvulas de pressão diferencial clássica, os estudos relatam maiores complicações devido à hiperdrenagem. As válvulas de baixo fluxo obtiveram uma taxa de hiperdrenagem de 3,2% e a taxa de resolução dos sintomas com válvulas gravitacionais foi superior a 82%. O tratamento cirúrgico da hidrocefalia é baseado no implante de um sistema de derivação ventricular, neuroendoscopia ou ambos. Há mudanças nos sistemas de derivação que tentam reduzir a hiperdrenagem, o que inclui válvulas projetadas para abrir sob diferentes pressões e dispositivos antissifão. Os dispositivos de terceira e quarta geração mostraram-se promissores no tratamento e prevenção de drenagem excessiva. Entretanto, mais estudos devem ser feitos para garantir mais confiabilidade.

Palavras-chave

Sistema glinfático; Derivação; Válvulas; Fluxo liquórico

Abstract

Since 1956, numerous shunt devices were designed to treat hydrocephalus. Consequently, overdrainage emerged as a serious complication that predisposes to other diseases. This review aims to describe the factors associated with overdrainage and to analyze the main interventions used in the treatment and prevention of this complication. Articles on the PubMed, BVS, Scielo, EMBASE, SCOPUS, Cochrane and Web of Science databases were selected using as terms: ‘’overdrainage’’, ‘’complications’’, ‘’hydrocephalus’’, ‘’valves’’, ‘’treatment’’, ‘’neurosurgery’’. After applying all exclusion criteria, 19 articles were included. In a study with programmable differential pressure (DP) valves, 26.6% of cases of overdrainage were reported showing improvement in symptoms in 87.5% of cases, after valve pressure readjustments. In classic differential pressure valves, studies report higher complications from overdrainage. The low flow (LF) valves obtained an overdrainage rate of 3.2% and the rate of symptom resolution with gravitational valves was higher than 82%. Surgical treatment of hydrocephalus is based on the implantation of a shunt system, ventricular, neuroendoscopy, or both. There are changes in the shunt systems that try to reduce the overdrainage, which includes valves designed to open at different pressures and anti-siphon devices. Third and fourth generation devices show promises in the treatment and prevention of overdrainage, however, studies should continue to be done to ensure even more efficiency.

Keywords

Glymphatic system; Shunts; Valves; CSF flow

References

1. Pinto JRC, Maset AL, Xavier VEF, Mansur SS, Vieira EDR. (2007). Anti-siphoning devices to prevent the over-drainage of csf in external shunts. In COBEM 2007: 19th International Congress of Mechanical Engineering; 2007 Nov 5-9; Brasília, DF, Brasil. Brasília: ABCM.

2. Pudenz RH, Foltz EL. Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg Neurol. 1991;35(3):200- 12. http://dx.doi.org/10.1016/0090-3019(91)90072-H. PMid:1996449.

3. Virella AA, Galarza M, Masterman-Smith M, Lemus R, Lazareff JA. Distal slit valve and clinically relevant CSF overdrainage in children with Hydrocephalus. Childs Nerv Syst. 2002;18(1-2):15-8. http://dx.doi. org/10.1007/s00381-001-0544-1. PMid:11935238.

4. Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381- 400. http://dx.doi.org/10.1159/000452840. PMid:28249297.

5. Di Rocco C, Turgut M, Jallo G, Martínez-Lage JF, editors. Complications of CSF shunting in Hydrocephalus: prevention, identification, and management. 1st ed. London: Springer; 2015. http:// dx.doi.org/10.1007/978-3-319-09961-3.

6. Toma AK, Tarnaris A, Kitchen ND, Watkins LD. Use of the proGAV shunt valve in normal-pressure hydrocephalus. Neurosurgery. 2011;68(2, Suppl Operative):245-9. http://dx.doi.org/10.1227/ NEU.0b013e318214a809. PMid:21368692.

7. Browd SR, Gottfried ON, Ragel BT, Kestle JRW. Failure of cerebrospinal fluid shunts: Part II: overdrainage, loculation, and abdominal complications. Pediatr Neurol. 2006;34(3):171-6. http:// dx.doi.org/10.1016/j.pediatrneurol.2005.05.021. PMid:16504785.

8. Diesner N, Freimann F, Clajus C, Kallenberg K, Rohde V, Stockhammer F. Female gender predisposes for cerebrospinal fluid overdrainage in ventriculoperitoneal shunting. Acta Neurochir. 2016;158(7):1273-8. http://dx.doi.org/10.1007/s00701-016-2827-z. PMid:27177735.

9. Meier U, Stengel D, Müller C, et al. Predictors of subsequent overdrainage and clinical outcomes after ventriculoperitoneal shunting for idiopathic normal pressure hydrocephalus. Neurosurgery. 2013;73(6):1054-60. http://dx.doi.org/10.1227/NEU.0000000000000155. PMid:24257332.

10. Alvarado A, Boyle J, Martinez D, Avellino AM, Lin J. Commentary: postural headache associated with ventriculo-peritoneal shunt overdrainage: what are our options? Neurosurgery. 2017;80(5):E247-8. http://dx.doi.org/10.1093/neuros/nyw185. PMid:28328008.

11. Khan QU, Wharen RE, Grewal SS, et al. Overdrainage shunt complications in idiopathic normal-pressure Hydrocephalus and lumbar puncture opening pressure. J Neurosurg. 2013;119(6):1498-502. http:// dx.doi.org/10.3171/2013.7.JNS13484. PMid:23930853.

12. Arnell K, Eriksson E, Olsen L. The programmable adult codman hakim valve is useful even in very small children with hydrocephalus: a

7-year retrospective study with special focus on cost/benefit analysis. Eur J Pediatr Surg. 2006;16(1):1-7. http://dx.doi.org/10.1055/s-2006-923904. PMid:16544218.

13. Kondageski C, Thompson D, Reynolds M, Hayward RD. Experience with the Strata valve in the management of shunt overdrainage. J Neurosurg Pediatr. 2007;106(2, Suppl):95-102. http://dx.doi.org/10.3171/ ped.2007.106.2.95. PMid:17330533.

14. Lemaître H, Crivello F, Grassiot B, Alpérovitch A, Tzourio C, Mazoyer B. Age- and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage. 2005;26(3):900-11. http://dx.doi.org/10.1016/j. neuroimage.2005.02.042. PMid:15955500.

15. Lemcke J, Meier U, Müller C, et al. Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry. 2013;84(8):850-7. http://dx.doi. org/10.1136/jnnp-2012-303936. PMid:23457222.

16. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD. Posture-related overdrainage: comparison of the performance of 10 Hydrocephalus shunts in vitro. Neurosurgery. 1998;42(2):327-34. http://dx.doi. org/10.1097/00006123-199802000-00069. PMid:9482183.

17. Gehlen M, Eklund A, Kurtcuoglu V, Malm J, Schmid Daners M. Comparison of anti-siphon devices: how do they affect CSF dynamics in supine and upright posture? Acta Neurochir. 2017;159(8):1389-97. http://dx.doi.org/10.1007/s00701-017-3249-2. PMid:28660395.

18. Scholz R, Lemcke J, Meier U, Stengel D. Efficacy and safety of programmable compared with fixed anti-siphon devices for treating idiopathic normal-pressure Hydrocephalus (iNPH) in adults – SYGRAVA: study protocol for a randomized trial. Trials. 2018;19(1):566. http:// dx.doi.org/10.1186/s13063-018-2951-6. PMid:30333067.

19. Suchorska B, Kunz M, Schniepp R, et al. Optimized surgical treatment for normal pressure Hydrocephalus: comparison between gravitational and differential pressure valves. Acta Neurochir. 2015;157(4):703-9. http://dx.doi.org/10.1007/s00701-015-2345-4. PMid:25666108.

20. Galvão TF, Pansani TSA, Harrad D. Principais itens para relatar revisões sistemáticas e meta- -análises: a recomendação Prisma. Epidemiol Serv Saude. 2015;2(2):335-42.

21. Lifshutz JI, Johnson WD. History of hydrocephalus and its treatments. Neurosurg Focus. 2001;11(2):E1-5. http://dx.doi.org/10.3171/ foc.2001.11.2.2. PMid:16602674.

22. Filis AK, Aghayev K, Vrionis FD. Cerebrospinal fluid and hydrocephalus: physiology, diagnosis, and treatment. Cancer Control. 2017;24(1):6-8. http://dx.doi.org/10.1177/107327481702400102. PMid:28178707.

23. Sæhle T, Farahmand D, Eide PK, Tisell M, Wikkelsö C. A randomized controlled dual-center trial on shunt complications in idiopathic normal-pressure Hydrocephalus treated with gradually reduced or “fixed” pressure valve settings. J Neurosurg. 2014;121(5):1257-63. http://dx.doi.org/10.3171/2014.7.JNS14283. PMid:25192478.

24. Pinto FCG, Oliveira MF, Castro JPS, Morais JVR, Pinto FMG, Teixeira MJ. Clinical performance of fixed-pressure Sphera Duo® hydrocephalus shunt. Arq Neuropsiquiatr. 2020;78(1):9-12. http:// dx.doi.org/10.1590/0004-282x20190135. PMid:32074184.

25. Pinto FCG, Pereira RM, Saad F, Teixeira MJ. Performance of fixed- pressure valve with antisiphon device SPHERA® in hydrocephalus treatment and overdrainage prevention. Arq Neuropsiquiatr. 2012;70(9):704-9. http://dx.doi.org/10.1590/S0004-282X2012000900011. PMid:22990728.

26. Boschert JM, Krauss JK. Endoscopic third ventriculostomy in the treatment of shunt-related over-drainage: preliminary experience with a new approach how to render ventricles navigable. Clin Neurol Neurosurg. 2006;108(2):143-9. http://dx.doi.org/10.1016/j.clineuro.2005.03.006. PMid:16412835.

27. Wetzel C, Goertz L, Schulte AP, Goldbrunner R, Krischek B. Minimizing overdrainage with flow-regulated valves – Initial results of a prospective study on idiopathic normal pressure Hydrocephalus. Clin Neurol Neurosurg. 2018;173:31-7. http://dx.doi.org/10.1016/j. clineuro.2018.07.017. PMid:30071502.

28. Rohde V, Mayfrank L, Ramakers VT, Gilsbach JM. Four-year experience with the routine use of the programmable Hakim valve in the management of children with Hydrocephalus. Acta Neurochir. 1998;140(11):1127-34. http://dx.doi.org/10.1007/s007010050226. PMid:9870057.

29. Gruber RW, Roehrig B. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive Hydrocephalus: a 25-year follow-up study. J Neurosurg Pediatr. 2010;5(1):4-16. http://dx.doi.org/10.3171/2008.7.17690. PMid:20043731.

30. Jain H, Sgouros S, Walsh AR, Hockley AD. The treatment of infantile Hydrocephalus: “differential-pressure” or ”flow-control” valves. Childs Nerv Syst. 2000;16(4):242-6. http://dx.doi.org/10.1007/s003810050505. PMid:10855523.

31. Freimann FB, Sprung C. Shunting with gravitational valves: can adjustments end the era of revisions for overdrainage- related events? J Neurosurg. 2012;117(6):1197-204. http://dx.doi. org/10.3171/2012.8.JNS1233. PMid:22998061.

32. Kehler U, Kiefer M, Eymann R, et al. PROSAIKA: A prospective multicenter registry with the first programmable gravitational device for Hydrocephalus shunting. Clin Neurol Neurosurg. 2015;137:132-6. http://dx.doi.org/10.1016/j.clineuro.2015.07.002. PMid:26196478.

33. Bozhkov Y, Roessler K, Hore N, Buchfelder M, Brandner S. Neurological outcome and frequency of overdrainage in normal pressure Hydrocephalus directly correlates with implanted ventriculo-peritoneal shunt valve type. Neurol Res. 2017;39(7):601-5. http://dx.doi.org/10.1 080/01616412.2017.1321300. PMid:28460569.

34. Rohde V, Haberl E-J, Ludwig H, Thomale U-W. First experiences with an adjustable gravitational valve in childhood Hydrocephalus. J Neurosurg Pediatr. 2009;3(2):90-3. http://dx.doi.org/10.3171/2008.11. PEDS08154. PMid:19278305.

35. Lemcke J, Meier U. Improved outcome in shunted inph with a combination of a codman hakim programmable valve and an aesculap-


miethke shuntassistant. Cent Eur Neurosurg. 2010;71(3):113-6. http:// dx.doi.org/10.1055/s-0029-1241179. PMid:20373276.

36. Wetzel C, Goertz L, Noé P, et al. Flow-regulated versus differential pressure valves for idiopathic normal pressure hydrocephalus: comparison of overdrainage rates and neurological outcome. Acta Neurochir. 2020;162(1):15-21. http://dx.doi.org/10.1007/s00701-019-04088-9. PMid:31713158.

37. Weinzierl MR, Hans F-J, Stoffel M, Oertel MF, Korinth MC. Experience with a gravitational valve in the management of symptomatic overdrainage in children with shunts. J Neurosurg Pediatr. 2012;9(5):468- 72. http://dx.doi.org/10.3171/2012.1.PEDS11110. PMid:22546023.

38. Tschan CA, Antes S, Huthmann A, Vulcu S, Oertel J, Wagner W. Overcoming CSF overdrainage with the adjustable gravitational valve proSA. Acta Neurochir. 2014;156(4):767-76. http://dx.doi.org/10.1007/ s00701-013-1934-3. PMid:24292775.

39. Delwel EJ, de Jong DA, Dammers R, Kurt E, van den Brink W, Dirven CMF. A randomised trial of high and low pressure level settings on an adjustable ventriculoperitoneal shunt valve for idiopathic normal pressure Hydrocephalus: results of the Dutch evaluation programme Strata shunt (DEPSS) trial. J Neurol Neurosurg Psychiatry. 2013;84(7):813-7. http:// dx.doi.org/10.1136/jnnp-2012-302935. PMid:23408069.

40. Sprung C, Schlosser H-G, Lemcke J, et al. The adjustable proGAV shunt. Neurosurgery. 2010;66(3):465-74. http://dx.doi.org/10.1227/01. NEU.0000365272.77634.6B. PMid:20173542.

41. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583-99. http://dx.doi.org/10.1007/s11064-015-1581-6. PMid:25947369.

42. Kraemer MR, Koueik J, Rebsamen S, et al. Overdrainage- related ependymal bands: a postulated cause of proximal shunt obstruction. J Neurosurg Pediatr. 2018;22(5):567-77. http://dx.doi. org/10.3171/2018.5.PEDS18111. PMid:30117791.

43. Czosnyka M, Czosnyka ZH. Overdrainage of cerebrospinal fluid and hydrocephalus shunts. Acta Neurochir. 2017;159(8):1387-8. http:// dx.doi.org/10.1007/s00701-017-3251-8. PMid:28647797.

44. Miyake H. Shunt devices for the treatment of adult hydrocephalus: recent progress and characteristics. Neurol Med Chir. 2016;56(5):274- 83. http://dx.doi.org/10.2176/nmc.ra.2015-0282. PMid:27041631.

45. Watson DA. The Delta Valve: a physiologic shunt system. Childs Nerv Syst. 1994;10(4):224-30. http://dx.doi.org/10.1007/BF00301158. PMid:7923231.

46. Chari A, Czosnyka M, Richards HK, Pickard JD, Czosnyka ZH. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory. J Neurosurg. 2014;120(3):697- 707. http://dx.doi.org/10.3171/2013.11.JNS121895. PMid:24405071.

47. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD. Laboratory testing of hydrocephalus shunts – conclusion of the U.K. shunt evaluation programme. Acta Neurochir. 2002;144(6):525-38, discussion 538. http:// dx.doi.org/10.1007/s00701-002-0922-9. PMid:12111485.

48. Tachatos N, Chappel E, Dumont-Fillon D, Meboldt M, Daners MS. Posture related in-vitro characterization of a flow regulated MEMS CSF valve. Biomed Microdevices. 2020;22(1):21. http://dx.doi.org/10.1007/ s10544-020-0471-0. PMid:32088807.

49. Martínez-Lage JF, Pérez Espejo MA, Almagro MJ, et al. Síndromes de hiperdrenaje de las válvulas en hidrocefalia infantil. Neurocirugia. 2005;16(2):124-33. http://dx.doi.org/10.1016/S1130-1473(05)70417-6. PMid:15915302.

50. Rekate HL. Shunt-related headaches: the slit ventricle syndromes. Childs Nerv Syst. 2008;24(4):423-30. http://dx.doi.org/10.1007/s00381- 008-0579-7. PMid:18259760.

51. Ros B, Iglesias S, Martín Á, Carrasco A, Ibáñez G, Arráez MA. Shunt overdrainage syndrome: review of the literature. Neurosurg Rev. 2018;41(4):969-81. http://dx.doi.org/10.1007/s10143-017-0849-5. PMid:28352945.

52. Cardoso MM, Gepp RA, Sainz Quiroga MR, Caetano de Sousa H. Compressão medular decorrente de hiperdrenagem de derivação ventriculoperitoneal: uma rara complicação. Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery. 2014;33(01):85-8. http://dx.doi. org/10.1055/s-0038-1626206.

53. Matsumoto K, Ohta M, Takeshita I. Symptomatic spinal extramedullary mass lesion secondary to chronic overdrainage of ventricular fluid: case report. Neurol Med Chir. 2002;42(3):140-2. http://dx.doi.org/10.2176/nmc.42.140. PMid:11936058.

54. Nomura S, Fujii M, Kajiwara K, et al. Factors influencing spinal canal stenosis in patients with long-term controlled Hydrocephalus treated with cerebrospinal fluid shunt. Childs Nerv Syst. 2010;26(7):931-5. http://dx.doi.org/10.1007/s00381-010-1092-3. PMid:20157714.

55. Diaz-Romero Paz R, Avendaño Altimira P, Coloma Valverde G, Balhen Martin C. A rare case of negative pressure hydrocephalus: a plausible explanation and the role of transmantle theory. World Neurosurg. 2019;125:6- 9. http://dx.doi.org/10.1016/j.wneu.2019.01.117. PMid:30710718.

56. Filippidis AS, Kalani MYS, Nakaji P, Rekate HL. Negative-pressure and low-pressure hydrocephalus: the role of cerebrospinal fluid leaks resulting from surgical approaches to the cranial base. J Neurosurg. 2011;115(5):1031-7. http://dx.doi.org/10.3171/2011.6.JNS101504. PMid:21800965.

57. Hunn BH, Mujic A, Sher I, Dubey AK, Peters-Willke J, Hunn AW. Successful treatment of negative pressure hydrocephalus using timely titrated external ventricular drainage: a case series. Clin Neurol Neurosurg. 2014;116:67-71. http://dx.doi.org/10.1016/j. clineuro.2013.10.019. PMid:24275338.

58. Vassilyadi M, Farmer J, Montes JL. Negative-pressure hydrocephalus. J Neurosurg. 1995;83(3):486-90. http://dx.doi.org/10.3171/ jns.1995.83.3.0486. PMid:7666227.

59. Wu X, Zang D, Wu X, Sun Y, Yu J, Hu J. The diagnosis and management for secondary low or negative-pressure hydrocephalus and a new hydrocephalus classification based on ventricle pressure. World Neurosurg. 2019;124:e510-6. http://dx.doi.org/10.1016/j. wneu.2018.12.123.

60. Rekate HL. Low or negative pressure hydrocephalus demystified. World Neurosurg. 2019;128:287-8. http://dx.doi.org/10.1016/j. wneu.2019.05.032. PMid:31103762.

61. Ekstedt J. CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978;41(4):345-53. http://dx.doi.org/10.1136/ jnnp.41.4.345. PMid:650242.

62. Kadowaki C, Hara M, Numoto M, Takeuchi K. Factors affecting cerebrospinal fluid flow in a shunt. Br J Neurosurg. 1987;1(4):467-75. http://dx.doi.org/10.3109/02688698708999638. PMid:3268143.

63. Reeves BC, Karimy JK, Kundishora AJ, et al. Comprometimento do sistema linfático na doença de Alzheimer e hidrocefalia de pressão normal idiopática. Trends Mol Med. 2019;26:285-95. http://dx.doi. org/10.1016/j.molmed.2019.11.008. PMid:31959516.

64. Kadowaki C, Hara M, Numoto M, Takeuchi K, Saito I. CSF shunt physics: factors influencing inshunt CSF flow. Childs Nerv Syst. 1995;11(4):203-6. http://dx.doi.org/10.1007/BF00277654. PMid:7621480.

65. Murphy DGM, DeCarli C, Schapiro MB, Rapoport SI, Horwitz B. Age-related differences in volumes of subcortical nuclei, brain matter, and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Arch Neurol. 1992;49(8):839-45. http://dx.doi. org/10.1001/archneur.1992.00530320063013. PMid:1343082.

66. Magram G, Liakos AM. The CSF accumulator. Neurol Res. 2000;22(1):4-18. http://dx.doi.org/10.1080/01616412.2000.11741032. PMid:10672575.

67. Hui FK. Clearing your mind: a glymphatic system? World Neurosurg. 2015;83(5):715-7. http://dx.doi.org/10.1016/j.wneu.2015.03.001. PMid:25818892.

68. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med. 2012;4(147):147ra111. http://dx.doi.org/10.1126/scitranslmed.3003748. PMid:22896675.

69. Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev. 2018;84:316-24. http://dx.doi. org/10.1016/j.neubiorev.2017.08.016. PMid:28859995.

70. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-7. http://dx.doi.org/10.1126/ science.1241224. PMid:24136970.

71. Bower NI, Hogan BM. Brain drains: new insights into brain clearance pathways from lymphatic biology. J Mol Med. 2018;96(5):383-90. http:// dx.doi.org/10.1007/s00109-018-1634-9. PMid:29610928.

72. Smith AJ, Yao X, Dix JA, Jin B-J, Verkman AS. Test of the “glymphatic” hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife. 2017;6:e27679. http:// dx.doi.org/10.7554/eLife.27679. PMid:28826498.

73. Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci.

2014;37(11):620-8. http://dx.doi.org/10.1016/j.tins.2014.08.010. PMid:25236348.

74. Laurentis C, Cristaldi P, Arighi A, et al. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol. 2021;268(11):4078-94. http://dx.doi.org/10.1007/ s00415-020-10122-z. PMid:32747978.

75. Buishas J, Gould IG, Linninger AA. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces. Croat Med J. 2014;55(5):481-97. http://dx.doi.org/10.3325/ cmj.2014.55.481. PMid:25358881.

76. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691-705. http:// dx.doi.org/10.1093/brain/awx191. PMid:28969373.


(1) Medical student, Medical School, Atenas University, Passos, MG, Brazil.

(2) Medical student, Medical School, José do Rosário Vellano University, Alfenas, MG, Brazil.

(3) MD, PhD, Scientific Director, EDUCSIM Institute, Neurosurgery Department, Santa Marcelina Hospital, São Paulo, SP, Brazil.

(4) MD, Neurosurgery Department, Foundation Regional Faculty of Medicine of São José do Rio Preto – FUNFARME, São José do Rio Preto, SP, Brazil.

(5) MD, PhD, Neurosurgery Department, Atenas University Medical School, Passos, MG, Brazil.

 

Received Nov 15, 2021
Corrected Feb 27, 2022
Accepted Mar 23, 2022


JBNC  Brazilian Journal of Neurosurgery

  •   ISSN (print version): 0103-5118
  •   e-ISSN (online version): 2446-6786

Contact

Social Media

   

ABNc  Academia Brasileira de Neurocirurgia

  •   Rua da Quitanda 159 – 10º andar - Centro - CEP 20091-005 - Rio de Janeiro - RJ
  •   +55 21 2233.0323
  •    abnc@abnc.org.br