REVIEW

The Meaning of Fever in Traumatic Brain Injury

O Significado da Febre no Trauma Cranioencefálico

  • Samuel Pedro Pereira Silveira 1    Samuel Pedro Pereira Silveira 1
  • Carlos Umberto Pereira 2    Carlos Umberto Pereira 2
  • Roberto Alexandre Dezena 3    Roberto Alexandre Dezena 3
  Views: 10331
  Downloads: 3936

Resumo

Introdução: O traumatismo cranioencefálico (TCE) é uma preocupação global significativa em saúde, contribuindo substancialmente para a morbidade, mortalidade e incapacidade em várias faixas etárias, com uma incidência marcada entre adultos jovens. A regulação da temperatura cerebral desempenha um papel crucial na fisiologia, sendo influenciada por processos intrincados relacionados ao metabolismo de glicose, proteínas e gorduras. A alta atividade metabólica do cérebro e o isolamento proporcionado pelo crânio contribuem para as variações de temperatura. Este contexto estabelece um terreno complexo para compreender a interação entre o TCE e a regulação térmica cerebral. Objetivo: O objetivo deste trabalho é explorar a relação entre a febre e o TCE, destacando os desafios adicionais que a febre apresenta para os resultados clínicos. Procuraremos entender o papel da febre na inflamação e sua influência no contexto do TCE. Além disso, pretendemos examinar a importância do resfriamento imediato em casos graves para prevenir complicações a curto e longo prazo, como insuficiência de múltiplos órgãos. Metodologia: Para atingir os objetivos propostos, será realizada uma revisão sistemática da literatura científica, abrangendo estudos clínicos, experimentais e revisões relevantes. A pesquisa foi conduzida em bases de dados PubMed, Scopus, Web of Science e Cochrane Library, utilizando termos de busca específicos relacionados à febre, Traumatismo Cranioencefálico e regulação térmica cerebral. Desta forma, 160 referências foram utilizadas, tratando desde a epidemiologia, passando por aspectos históricos, descrição fisiológica e o estado da arte no tratamento da febre no TCE. Resultados: Os resultados sugerem uma interação complexa entre o TCE e a febre, com implicações significativas nos resultados clínicos. A febre precoce está correlacionada a um prognóstico desfavorável, destacando a importância da monitorização da temperatura em pacientes com TCE. A distinção entre febre neurogênica e infecções se revela crucial para a aplicação de tratamentos personalizados, incluindo o uso de antipiréticos, métodos de resfriamento e possíveis intervenções neuroprotetoras. Os danos induzidos pela febre, como efeitos citotóxicos e impactos sistêmicos, ressaltam a urgência do resfriamento imediato em casos graves para prevenir complicações em longo prazo, como a insuficiência de múltiplos órgãos. Conclusão: Estes resultados apontam para a necessidade de estratégias clínicas específicas para abordar a febre em pacientes com TCE, visando melhorar os desfechos clínicos e a qualidade de vida pós-lesão.

Palavras-chave

Febre; Trauma cranioencefálico; Hipertermia

Abstract

Introduction: Traumatic Brain Injury (TBI) is a significant global health concern, substantially contributing to morbidity, mortality, and disability across various age groups, with a marked incidence among young adults. Brain temperature regulation plays a crucial role in physiology, influenced by intricate processes related to glucose, protein, and fat metabolism. The brain’s high metabolic activity and isolation provided by the skull contribute to temperature variations. This context establishes a complex groundwork for understanding the interaction between TBI and cerebral thermal regulation. Objective: The aim of this work is to explore the relationship between fever and TBI, highlighting the additional challenges fever presents for clinical outcomes. We seek to understand the role of fever in inflammation and its influence in the context of TBI. Additionally, we intend to examine the importance of immediate cooling in severe cases to prevent short and long-term complications, such as multiple organ failure. Methods: To achieve the proposed objectives, a systematic review of scientific literature will be conducted, encompassing clinical studies, experimental research, and relevant reviews. The research was carried out on PubMed, Scopus, Web of Science, and the Cochrane Library databases, using specific search terms related to fever, Traumatic Brain Injury, and cerebral thermal regulation. Thus, 160 references were utilized, covering epidemiology, historical aspects, physiological description, and the current state of fever treatment in TBI. Results: The results suggest a complex interaction between TBI and fever, with significant implications for clinical outcomes. Early fever is correlated with an unfavorable prognosis, emphasizing the importance of temperature monitoring in TBI patients. Distinguishing between neurogenic fever (NF) and infections proves crucial for personalized treatments, including the use of antipyretics, cooling methods, and potential neuroprotective interventions. Fever-induced damage, such as cytotoxic effects and systemic impacts, underscores the urgency of immediate cooling in severe cases to prevent long-term complications, such as multiple organ failure. Conclusion: These findings point to the need for specific clinical strategies to address fever in TBI patients, aiming to improve clinical outcomes and post-injury quality of life.

Keywords

Fever; Traumatic brain injury; Hyperthermia

References

1. Ghajar J. Traumatic brain injury. Lancet. 2000;356(9233):923-9. http://doi.org/10.1016/S0140-6736(00)02689-1. PMid:11036909.
2. Magalhães A, Souza LD, Faleiro RM, Teixeira A, Miranda A. Epidemiology of traumatic brain injury in Brazil. Rev Bras Neurol. 2017;53(2):15-22.
3. Ferreira AM, Santos JS, Marim AA, et al. Prognostic value of serum creatinine in traumatic brain injury. J Bras Neurocir. 2021;32(3):229-41. http://doi.org/10.22290/jbnc.v32i3.1976.
4. Kamp M, Tahsim-Oglou Y, Steiger HJ, Hänggi D. Traumatic brain injuries in the ancient Egypt: insights from the Edwin Smith papyrus. J Neurol Surg A Cent Eur Neurosurg. 2012;73(4):230-7. http://doi. org/10.1055/s-0032-1313635. PMid:22271381.
5. Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637-40. http://doi.org/10.1016/j.apmr.2010.05.017. PMid:21044706. 6. Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29(1):19-31. http://doi.org/10.1089/neu.2011.2122. PMid:21988198.
7. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mount Sinai J Med: J Translat Personal Med. 2009;76(2):97-104. http:// doi.org/10.1002/msj.20104. PMid:19306379.
8. Gerberding J, Binder S. Report to congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem Atlanta. Atlanta: National Center for Injury Prevention and Control; 2003.
9. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375-8. http://doi.org/10.1097/00001199-200609000-00001. PMid:16983222.
10. Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe. Acta Neurochir (Wien). 2015;157(10):1683-96. http://doi.org/10.1007/s00701-015-2512-7. PMid:26269030.
11. Curtis K, Caldwell E, Delprado A, Munroe B. Traumatic injury in Australia and New Zealand. Australas Emerg Nurs J. 2012;15(1):45-54. http://doi.org/10.1016/j.aenj.2011.12.001. PMid:22813623.
12. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien). 2006;148(3):255-68, discussion 268. http://doi.org/10.1007/ s00701-005-0651-y. PMid:16311842.
13. de Almeida CER, de Sousa Filho JL, Dourado JC, Gontijo PAM, Dellaretti MA, Costa BS. Traumatic brain injury epidemiology in Brazil. World Neurosurg. 2016;87:540-7. http://doi.org/10.1016/j. wneu.2015.10.020. PMid:26485419.
14. Fernandes RNR, Silva M. Epidemiology of traumatic brain injury in Brazil. Braz Neurosurg. 2013;32(03):136-42. http://doi. org/10.1055/s-0038-1626005.
15. Bengualid V, Talari G, Rubin D, Albaeni A, Ciubotaru RL, Berger J. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury. Am J Crit Care. 2015;24(2):e1-5. http://doi.org/10.4037/ ajcc2015856. PMid:25727281.
16. Polderman KH. An injured brain needs cooling down: yes. Intensive Care Med. 2015;41(6):1126-8. http://doi.org/10.1007/s00134-015- 3798-x. PMid:25971379.
17. Chhabra S, Majhi S, Sabyasachi S. Fever as an independent prognostic factor in traumatic brain injury. Rom Neurosurg. 2020;34(3):424-6. http://doi.org/10.33962/roneuro-2020-067.
18. Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-97. http://doi. org/10.3171/2017.10.JNS17352. PMid:29701556.
19. Haarbauer-Krupa J, Pugh MJ, Prager EM, Harmon N, Wolfe J, Yaffe K. Epidemiology of chronic effects of traumatic brain injury. J Neurotrauma. 2021;38(23):3235-47. http://doi.org/10.1089/ neu.2021.0062. PMid:33947273.
20. Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin (Barc). 2020;104(2):213-38. PMid:32035565.
21. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: A meta-analysis. J Int Neuropsychol Soc. 2005;11(3):215-27. http://doi.org/10.1017/S1355617705050277. PMid:15892898.
22. CENTERS FOR DISEASE CONTROL AND PREVENTION. National Center for Health Statistics: Mortality Data on CDC WONDER. Available from: https://wonder.cdc.gov/. Accessed: 6/17/2024
23. Finkelstein E, Corso PS, Miller TR. The incidence and economic burden of injuries in the United States. Oxford: Oxford University Press; 2006.. http://doi.org/10.1093/acprof:oso/9780195179484.001.0001.
24. Brazinova A, Rehorcikova V, Taylor MS, et al. Epidemiology of traumatic brain injury in europe: a living systematic review. J Neurotrauma. 2021;38(10):1411-40. http://doi.org/10.1089/ neu.2015.4126. PMid:26537996.
25. Carmo Santos J. Traumatismo cranioencefálico no Brasil: análise epidemiológica. RESAP. 2020;6(3):e6000014-24.
26. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719-38. http://doi.org/10.1089/neu.2008.0586. PMid:18627252.
27. Andrade A, Marino R Jr, Miura F, et al. Diagnóstico e conduta no paciente com traumatismo cranioencefálico leve. Sociedade Brasileira de Neurocirurgia; 2001. (Projeto Diretrizes).
28. Almeida Gentile JK, Himuro HS, Rojas SSO, Cordeiro V, Veiga LECA, de Carvalho JC. Condutas no paciente com trauma cranioencefálico. Rev Bras Clin Med São Paulo. 2011;9(1):74-82.
29. Kubal W. Updated imaging of traumatic brain injury. Radiol Clin North Am. 2012;50(1):15-41. http://doi.org/10.1016/j.rcl.2011.08.010. PMid:22099485.
30. Puntis M, Smith M. Critical care management of adult traumatic brain injury. Anaesth Intensive Care Med. 2017;18(5):233-8. http:// doi.org/10.1016/j.mpaic.2017.02.008.
31. Hazeldine J, Foster M. The Immune and Inflammatory Response to Major Traumatic Injury. In: Bull AMJ, Clasper J, Mahoney PF, editors. Blast injury science and engineering. Cham: Springer; 2022. http://doi. org/10.1007/978-3-031-10355-1_13.
32. Bryden D, Tilghman J, Hinds S II. Blast-related traumatic brain injury: current concepts and research considerations. J Exp Neurosci. 2019;13:1179069519872213. http://doi.org/10.1177/1179069519872213. PMid:31548796.
33. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4-9. http://doi.org/10.1093/bja/aem131. PMid:17573392.
34. Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosci J. 2013;18(3):222-34. PMid:23887212.
35. Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307-15. http://doi.org/10.1242/dmm.011585. PMid:24046353.
36. McGinn MJ, Povlishock JT. Pathophysiology of traumatic brain injury. Neurosurg Clin. 2016;27(4):397-407. http://doi.org/10.1016/j. nec.2016.06.002. PMid:27637392.
37. Inoue Y, Shiozaki T, Tasaki O, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma. 2005;22(12):1411-8. http://doi.org/10.1089/neu.2005.22.1411. PMid:16379579.
38. Cunningham A, Salvador R, Coles J, et al. Physiological thresh- olds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain. 2005;128(8):1931-42. http://doi.org/10.1093/brain/ awh536. PMid:15888537.
39. Armstead WM. Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebro vasoconstriction after brain injury. Eur J Pharmacol. 2006;529(1-3):129- 35. http://doi.org/10.1016/j.ejphar.2005.08.059. PMid:16352304.
40. O’Connell KM, Littleton-Kearney MT. The role of free radicals in traumatic brain injury. Biol Res Nurs. 2013;15(3):253-63. http://doi. org/10.1177/1099800411431823. PMid:22345426.
41. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 2005;75(3):207-46. http://doi.org/10.1016/j. pneurobio.2005.02.004. PMid:15882775.
42. Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem. 2007;101(5):1248-57. http://doi.org/10.1111/j.1471-4159.2007.04489.x. PMid:17403141.
43. Zhang Z, Artelt M, Burnet M, Trautmann K, Schluesener H. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience. 2006;141(2):637-44. http://doi.org/10.1016/j. neuroscience.2006.04.027. PMid:16725271.
44. Wood WB Jr. Studies on the cause of fever. N Engl J Med. 1958;258(21):1023-31. http://doi.org/10.1056/NEJM195805222582101. PMid:13552914.
45. Atkins E. Fever: its history, cause, and function. Yale J Biol Med. 1982;55(3-4):283-9. PMid:6758374.
46. Mendelsohn E. Heat and life: the development of the theory of animal heat. Cambridge: Harvard University Press; 1964. http://doi. org/10.4159/harvard.9780674180840.
47. MacCallum WG. Fever. Arch Intern Med (Chic). 1909;2(6):569-602.
48. Foucault M. The birth of the clinic: an archeology of medical perception. New York: Vintage. Random House; 1975.
49. Ott I. The modern antipyretics, their action in health and disease. Philadelphia: Vogel; 1891.
50. Aronsohn M, Sachs B. Archiv für die gesamte. Physiologie. 1886;xxxvii:232.
51. Bernard C. Leçons sur la chaleur animale, sur les effets de la chaleur et sur la fièvre. Paris: Baillière; 1876.
52. Welgh WH. The General Pathology of Fever. Boston Med Surg J. 1888;118(17):413-21. http://doi.org/10.1056/NEJM188804261181701.
53. Mrozek S, Vardon F, Geeraerts T. Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract. 2012;2012:989487. http://doi.org/10.1155/2012/989487. PMid:23326261.
54. Rzechorzek NM, Thrippleton MJ, Chappell FM, et al. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain. 2022;145(6):2031-48. http://doi.org/10.1093/brain/ awab466. PMid:35691613.
55. Hayward JN, Baker MA. A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res. 1969;16(2):417-40. http://doi.org/10.1016/0006- 8993(69)90236-4. PMid:4311724.
56. Wang H, Wang B, Normoyle KP, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci. 2014;8:307. http://doi.org/10.3389/fnins.2014.00307. PMid:25339859.
57. Baker MA. Brain cooling in endotherms in heat and exercise. Annu Rev Physiol. 1982;44(1):85-96. http://doi.org/10.1146/annurev. ph.44.030182.000505. PMid:7041811.
58. Cabanac M, Brinnel H. Blood flow in the emissary veins of the human head during hyperthermia. Eur J Appl Physiol Occup Physiol. 1985;54(2):172-6. http://doi.org/10.1007/BF02335925. PMid:4043044.
59. Zenker W, Kubik S. Brain cooling in humans - anatomical considerations. Anat Embryol (Berl). 1996;193(1):1-13. http://doi. org/10.1007/BF00186829. PMid:8838492.
60. Mariak Z, White MD, Lewko J, Lyson T, Piekarski P. Direct cooling of the human brain by heat loss from the upper respiratory tract. J Appl Physiol. 1999;87(5):1609-13. http://doi.org/10.1152/jappl.1999.87.5.1609. PMid:10562598.
61. Sessler DI, Todd MM. Perioperative heat balance. Anesthesiology. 2000;92(2):578-96. http://doi.org/10.1097/00000542-200002000-00042. PMid:10691247.
62. Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005;28(3):152-7. http://doi. org/10.1016/j.tins.2004.12.009. PMid:15749169.
63. Hammel HT, Jackson DC, Stolwijk JA, Hardy JD, Stromme SB. Temperature regulation by hypothalamic proportional control with an adjustable set point. J Appl Physiol. 1963;18(6):1146-54. http://doi. org/10.1152/jappl.1963.18.6.1146. PMid:14080734.
64. Boulant JA. Neuronal basis of Hammel’s model for set-point thermoregulation. J Appl Physiol. 2006;100(4):1347-54. http://doi. org/10.1152/japplphysiol.01064.2005. PMid:16540713.
65. Cabanac M. Adjustable set point: to honor Harold T. Hammel. J Appl Physiol. 2006;100(4):1338-46. http://doi.org/10.1152/ japplphysiol.01021.2005. PMid:16540712.
66. Mekjavic IB, Sundberg CJ, Linnarsson D. Core temperature ‘null zone’. J Appl Physiol. 1991;71(4):1289-95. http://doi.org/10.1152/ jappl.1991.71.4.1289. PMid:1757351.
67. Bligh J. A theoretical consideration of the means whereby the mammalian core temperature is defended at a null zone. J Appl Physiol. 2006;100(4):1332-7. http://doi.org/10.1152/japplphysiol.01068.2005. PMid:16540711.
68. Kiyatkin EA, Brown PL. Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats. Physiol Behav. 2005;84(4):563-70. http://doi.org/10.1016/j. physbeh.2005.02.002. PMid:15811391.
69. Kiyatkin EA, Brown PL, Wise RA. Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci. 2002;16(1):164- 8. http://doi.org/10.1046/j.1460-9568.2002.02066.x. PMid:12153543.
70. Zhu M, Nehra D, Ackerman JJH, Yablonskiy DA. On the role of anesthesia on the body/brain temperature differential in rats. J Therm Biol. 2004;29(7-8):599-603. http://doi.org/10.1016/j.jtherbio.2004.08.029.
71. McIlvoy L. Comparison of brain temperature to core temperature: a review of the literature. J Neurosci Nurs. 2004;36(1):23-31. http://doi. org/10.1097/01376517-200402000-00004. PMid:14998103.
72. Alessandri B, Hoelper BM, Behr R, Kempski O. Accuracy and stability of temperature probes for intracranial application. J Neurosci Methods. 2004;139(2):161-5. http://doi.org/10.1016/j.jneumeth.2004.04.021. PMid:15488228.
73. Karaszewski B, Wardlaw JM, Marshall I, et al. Measurement of brain temperature with magnetic reso- nance spectroscopy in acute ischemic stroke. Ann Neurol. 2006;60(4):438-46. http://doi.org/10.1002/ ana.20957. PMid:16972284.
74. Sahuquillo J, Vilalta A. Cooling the injured brain: how does moderate hypothermia influence the patho- physiology of traumatic brain injury. Curr Pharm Des. 2007;13(22):2310-22. http://doi. org/10.2174/138161207781368756. PMid:17692002.
75. Bisschops LLA, Hoedemaekers CWE, Simons KS, van der Hoeven JG. Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Crit Care Med. 2010;38(7):1542- 7. http://doi.org/10.1097/CCM.0b013e3181e2cc1e. PMid:20453643.
76. Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344(8):556- 63. http://doi.org/10.1056/NEJM200102223440803. PMid:11207351.
77. Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol. 2003;285(1):H17-25. http://doi.org/10.1152/ajpheart.01112.2002. PMid:12793975.
78. Tremey B, Vigu’e B. Changes in blood gases with temperature: implications for clinical practice. Ann Fr Anesth Reanim. 2004;23(5):474- 81. http://doi.org/10.1016/j.annfar.2004.01.017. PMid:15158238.
79. Vigué B, Ract C, Zlotine N, Leblanc P, Samii K, Bissonnette B. Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. Intensive Care Med. 2000;26(6):722-8. http://doi.org/10.1007/ s001340051238. PMid:10945389.
80. Kiyatkin EA, Sharma HS. Permeability of the blood–brain barrier depends on brain temperature. Neuroscience. 2009;161(3):926-39. http://doi.org/10.1016/j.neuroscience.2009.04.004. PMid:19362131.
81. Chatzipanteli K, Alonso OF, Kraydieh S, Dietrich WD. Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immuno-cytochemical studies. J Cereb Blood Flow Metab. 2000;20(3):531-42. http://doi.org/10.1097/00004647-200003000-00012. PMid:10724118.
82. Sharma H. Methods to produce hyperthermia-induced brain dysfunction. Prog Brain Res. 2007;162:173-99. http://doi.org/10.1016/ S0079-6123(06)62010-4. PMid:17645920.
83. Becker J, Wu S. Fever - An Update. J Am Podiatr Med Assoc. 2010;100(4):281-90. http://doi.org/10.7547/1000281. PMid:20660880.
84. O’Grady NP, Barie PS, Bartlett JG, et al. Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med. 2008;36(4):1330-49. http://doi.org/10.1097/ CCM.0b013e318169eda9. PMid:18379262.
85. Circiumaru B, Baldock G, Cohen J. A prospective study of fever in the intensive care unit. Intensive Care Med. 1999;25(7):668-73. http:// doi.org/10.1007/s001340050928. PMid:10470569.
86. Kaul DR, Flanders SA, Beck JM, Saint S. Incidence, etiology, risk factors, and outcome of hospital- acquired fever. J Gen Intern Med. 2006;21(11):1184-7. http://doi.org/10.1111/j.1525-1497.2006.00566.x. PMid:17026728.
87. Zimmerman JL, Hanania NA. Hyperthermia. In: Hall JB, Schmidt GA, Wood LDH, editors. Principles of critical care. 3rd ed. New York, NY: McGraw-Hill Inc; 2005. p. 1678.
88. Walter EJ, Hanna-Jumma S, Carraretto M, Forni L. The pathophysiological basis and consequences of fever. Crit Care. 2016;20(1):200. http://doi.org/10.1186/s13054-016-1375-5. PMid:27411542.
89. Ivanov AI, Patel S, Kulchitsky VA, Romanovsky AA. Platelet-activating factor: a previously unrecognized mediator of fever. J Physiol. 2003;553(Pt 1):221-8. http://doi.org/10.1113/jphysiol.2003.055616. PMid:14565987.
90. Bor DH, Makadon HJ, Friedland G, Dasse P, Komaroff AL, Aronson MD. Fever in hospitalized medical patients: characteristics and significance. J Gen Intern Med. 1988;3(2):119-25. http://doi. org/10.1007/BF02596115. PMid:3357068.
91. Sanchez-Alavez M, Tabarean IV, Behrens MM, Bartfai T. Ceramide mediates the rapid phase of febrile response to IL-1. Proc Natl Acad Sci USA. 2006;103(8):2904-8. http://doi.org/10.1073/pnas.0510960103. PMid:16477014.
92. Ootsuka Y, Blessing W, Steiner A, Romanovsky AA. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1294-303. http://doi.org/10.1152/ajpregu.00709.2007. PMid:18234746.
93. Blatteis C. The onset of fever: new insights into its mechanism. Prog Brain Res. 2007;162:3-14. http://doi.org/10.1016/S0079-6123(06)62001- 3. PMid:17645911.
94. Morrison S, Nakamura K, Madden C. Central control of thermogenesis in mammals. Exp Physiol. 2008;93(7):773-97. http:// doi.org/10.1113/expphysiol.2007.041848. PMid:18469069.
95. Bouchama A, Knochel JP. Heat Stroke. N Engl J Med. 2002;346(25):1978-88. http://doi.org/10.1056/NEJMra011089. PMid:12075060.
96. Cooper KE, Naylor AM, Veale WL. Evidence supporting a role for endogenous vasopressin in fever suppression in the rat. J Physiol. 1987;387(1):163-72. http://doi.org/10.1113/jphysiol.1987.sp016568. PMid:3498828.
97. Sinha P, Schoth H, Tatoo J. Activation of central melanocortin-4 receptor suppresses lipopolysaccharide-induced fever in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284(6):R1595-603. http:// doi.org/10.1152/ajpregu.00581.2002. PMid:12736185.
98. Miyoshi M, Kitagawa Y, Imoto T, Watanabe T. Effect of natriuretic peptide receptor antagonist on lipopolysaccharide-induced fever in rats: is natriuretic peptide an endogenous antipyretic? J Pharmacol Exp Ther. 2006;318(3):1163-70. http://doi.org/10.1124/jpet.106.102731. PMid:16751254.
99. Morrow LE, McClellan JL, Conn CA, Kluger MJ. Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. Am J Physiol. 1993;264(5):R1010-6. http://doi. org/10.1152/ajpregu.1993.264.5.R1010. PMid:8498588.
100. Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10(4):201- 22. PMid:15373964.
101. Launey Y, Nesseler N, Mallédant Y, Seguin P. Clinical review: fever in septic ICU patients—friend or foe? Crit Care. 2011;15(3):222. http:// doi.org/10.1186/cc10097. PMid:21672276.
102. Roth J, de Souza GEP. Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res. 2001;34(3):301-14. http://doi.org/10.1590/S0100-879X2001000300003. PMid:11262580.
103. Young PJ, Saxena M, Beasley R, et al. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012;38(3):437-44. http://doi.org/10.1007/s00134-012- 2478-3. PMid:22290072.
104. Cimpello LB, Goldman DL, Khine H. Fever pathophysiology. Clin Pediatr Emerg Med. 2000;1(2):84-93. http://doi.org/10.1016/ S1522-8401(00)90012-0.
105. Dinarello CA. Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10(4):201-22. http://doi.org/10.1177/09680519040100040301. PMid:15373964.
106. Walter EJ, Carraretto M. Drug-induced hyperthermia in critical care. J Intensive Care Soc. 2015;16(4):306-11. http://doi. org/10.1177/1751143715583502. PMid:28979436.
107. Dao CK, Nowinski SM, Mills EM. The heat is on: molecular mechanisms of drug-induced hyperthermia. Temperature. 2014;1(3):183- 91. http://doi.org/10.4161/23328940.2014.985953. PMid:27626045.
108. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33-56. http:// doi.org/10.1016/S1040-8428(01)00179-2. PMid:12098606.
109. Roti J. Cellular responses to hyperthermia (40–46 °C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):3-15. http://doi. org/10.1080/02656730701769841. PMid:18214765.
110. Dieing A, Ahlers O, Hildebrandt B, et al. The effect of induced hyperthermia on the immune system. Prog Brain Res. 2007;162:137- 52. http://doi.org/10.1016/S0079-6123(06)62008-6. PMid:17645918.
111. Heled Y, Fleischmann C, Epstein Y. Cytokines and their role in hyperthermia and heat stroke. J Basic Clin Physiol Pharmacol. 2013;24(2):85-96. http://doi.org/10.1515/jbcpp-2012-0040. PMid:23509213.
112. Rosebush PI, Anglin RE, Richards C, Mazurek MF. Neuroleptic malignant syndrome and the acute phase response. J Clin Psychopharmacol. 2008;28(4):459-61. http://doi.org/10.1097/ JCP.0b013e31817ea9c1. PMid:18626278.
113. Anglin R, Rosebush P, Mazurek M. Neuroleptic malignant syndrome: a neuroimmunologic hypothesis. CMAJ. 2010;182(18):E834-8. http:// doi.org/10.1503/cmaj.091442. PMid:20696799.
114. Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods. 2007;43(3):229-37. http://doi.org/10.1016/j.ymeth.2007.06.006. PMid:17920520.
115. Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C. Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol. 2006;172(172):171-98. http://doi.org/10.1007/3- 540-29717-0_8. PMid:16610360.
116. Quinn N, McGowan C, Cooper G, Koop B, Davidson W. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol Genomics. 2011;43(11):685-96. http://doi.org/10.1152/physiolgenomics.00008.2011. PMid:21467159.
117. Hall D, Buettner G, Oberley L, Xu L, Matthes R, Gisolfi C. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol. 2001;280(2):H509-21. http://doi.org/10.1152/ajpheart.2001.280.2.H509. PMid:11158946.
118. Sharma H, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation
and brain pathology. Prog Brain Res. 2007;162:245-73. http://doi. org/10.1016/S0079-6123(06)62013-X. PMid:17645923.
119. Mustafa S, Elgazzar A, Essam H, Gopinath S, Mathew M. Hyperthermia alters kidney function and renal scintigraphy. Am J Nephrol. 2007;27(3):315-21. http://doi.org/10.1159/000102597. PMid:17495428.
120. Badoer E. Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity and blood flow during hyperthermia and in heart failure. Am J Physiol Renal Physiol. 2010;298(4):F839-46. http:// doi.org/10.1152/ajprenal.00734.2009. PMid:20147365.
121. Vlad M, Ionescu N, Ispas A, Giuvărăşteanu I, Ungureanu E, Stoica C. Morphological changes during acute experimental short-term hyperthermia. Rom J Morphol Embryol. 2010;51(4):739-44. PMid:21103635.
122. Akhtar M, al Nozha M, al Harthi S, Nouh M. Electrocardiographic abnormalities in patients with heat stroke. Chest. 1993;104(2):411-4. http://doi.org/10.1378/chest.104.2.411. PMid:8339628.
123. Pease S, Bouadma L, Kermarrec N, Schortgen F, Régnier B, Wolff M. Early organ dysfunction course, cooling time and outcome in classic heatstroke. Intensive Care Med. 2009;35(8):1454-8. http://doi. org/10.1007/s00134-009-1500-x. PMid:19404610.
124. Alzeer A, el Hazmi M, Warsy A, Ansari Z, Yrkendi M. Serum enzymes in heatstroke: prognostic implication. Clin Chem. 1997;43(7):1182-7. http://doi.org/10.1093/clinchem/43.7.1182. PMid:9216454.
125. Jin Q, Chen E, Jiang J, Lu Y. Acute hepatic failure as a leading manifestation in exertional heat stroke. Case Rep Crit Care. 2012;2012:295867. http://doi.org/10.1155/2012/295867. PMid:24826335.
126. Badjatia N. Hyperthermia and fever control in brain injury. Crit Care Med. 2009;37(7, Suppl):S250-7. http://doi.org/10.1097/ CCM.0b013e3181aa5e8d. PMid:19535955.
127. Chhabra S, Majhi S, Sabyasachi S. Fever as an independent prognostic factor in traumatic brain injury. Rom Neurosurg. 2020;34(3):424-6. http://doi.org/10.33962/roneuro-2020-067.
128. Meier K, Lee K. Neurogenic fever: review of pathophysiology, evaluation, and management. J Intensive Care Med. 2017;32(2):124-9. http://doi.org/10.1177/0885066615625194. PMid:26772198.
129. Rincon F, Patel U, Schorr C, et al. Brain injury as a risk factor for fever upon admission to the intensive care unit and association with in-hospital case fatality: a matched cohort study. J Intensive Care Med. 2015;30(2):107-14. http://doi.org/10.1177/0885066613508266. PMid:24132129.
130. Bao L, Chen D, Ding L, Ling W, Xu F. Fever burden is an independent predictor for prognosis of traumatic brain injury. PLoS One. 2014;9(3):e90956. http://doi.org/10.1371/journal.pone.0090956. PMid:24626046.
131. Greer DM, Funk SE, Reaven NL, Ouzounelli M, Uman GC. Impact of Fever on outcome in patients with stroke and neurologic injury: A comprehensive meta-analysis. Stroke. 2008;39(11):3029-35. http://doi. org/10.1161/STROKEAHA.108.521583. PMid:18723420.
132. Crompton MR. Hypothalamic lesions following closed head injury. Brain. 1971;94(1):165-72. http://doi.org/10.1093/brain/94.1.165. PMid:5552160.
133. Chomova M, Zitnanova I. Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress. 2016;19(4):341-8. http://doi.org/10.1080/10253890.2016.1174848. PMid:27095435.
134. Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJ. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31(2):658-70. http://doi.org/10.1038/jcbfm.2010.142. PMid:20717122.
135. Choi HW, Jeon SB, Samuel S, Allison T, Lee K. Paroxysmal sympathetic hyperactivity after acute brain injury. Curr Neurol Neurosci Rep. 2013;13(8):370. http://doi.org/10.1007/s11910-013-0370-3. PMid:23780802.
136. Perkes IE, Menon DK, Nott MT, Baguley IJ. Paroxysmal sympathetic hyperactivity after acquired brain injury: a review of diagnostic criteria. Brain Inj. 2011;25(10):925-32. http://doi.org/10.3109/02699052.2011. 589797. PMid:21812584.
137. Lump D, Moyer M. Paroxysmal sympathetic hyperactivity after severe brain injury. Curr Neurol Neurosci Rep. 2014;14(11):494. http:// doi.org/10.1007/s11910-014-0494-0. PMid:25220846.
138. Connolly BR, Harden JK. An approach to the management of fever of unknown origin in the setting of acute spinal cord injury. Spinal Cord Ser Cases. 2021;7(1):19. http://doi.org/10.1038/s41394-021-00385-7. PMid:33712553.
139. Prasad C, Bindra A, Singh P, Singh GP, Singh PK, Mathur P. Healthcare-associated Infections in Pediatric Patients in Neurotrauma Intensive Care Unit: a retrospective analysis. Indian J Crit Care Med. 2021;25(11):1308-13. http://doi.org/10.5005/jp-journals-10071-24012. PMid:34866831.
140. Commichau C, Scarmeas N, Mayer S. Risk factors for fever in the neurologic intensive care unit. Neurology. 2003;60(5):837-41. http:// doi.org/10.1212/01.WNL.0000047344.28843.EB. PMid:12629243.
141. Thompson HJ, Pinto-Martin J, Bullock M. Neurogenic fever after traumatic brain injury: an epidemio- logical study. J Neurol Neurosurg Psychiatry. 2003;74(5):614-9. http://doi.org/10.1136/jnnp.74.5.614. PMid:12700304.
142. Hocker SE, Tian L, Li G, Steckelberg J, Mandrekar J, Rabinstein A. Indicators of central fever in the neurologic intensive care unit. JAMA Neurol. 2013;70(12):1499-504. http://doi.org/10.1001/ jamaneurol.2013.4354. PMid:24100963.
143. Childers M, Rupright J, Smith D. Post-traumatic hyperthermia in acute brain injury rehabilitation. Brain Inj. 1994;8(4):335-43. http:// doi.org/10.3109/02699059409150984. PMid:8081348.
144. Lausberg G. Significance of thermoregulatory disorders in the multi-injured with predominantly cranial lesion. Cah Anesthesiol. 1971;19(3):315-24. PMid:5110184.
145. Cunha B, Digamon-Beltran M, Gobba P. Implications of fever in the critical care setting. Heart Lung. 1984;13(5):460-5. PMid:6332099.
146. Whyte J, Filion D, Rose T. Defective thermoregulation after traumatic brain injury. A single subject evaluation. Am J Phys Med Rehabil. 1993;72(5):281-5. http://doi.org/10.1097/00002060-199310000- 00006. PMid:8398019.
147. Agrawal A, Timothy J, Thapa A. Neurogenic fever. Singapore Med J. 2007;48(6):492-4. PMid:17538744.
148. Segatore M. Fever after traumatic brain injury. J Neurosci Nurs. 1992;24(2):104-9. http://doi.org/10.1097/01376517-199204000-00010. PMid:1602170.
149. Tang B, Eslick G, Craig J, Mclean A. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7(3):210-7. http://doi.org/10.1016/ S1473-3099(07)70052-X. PMid:17317602.
150. Prkno A, Wacker C, Brunkhorst F, Schlattmann P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2013;17(6):r291. http://doi.org/10.1186/cc13157. PMid:24330744.
151. Morris PE, Promes JT, Guntupalli KK, Wright PE, Arons MM. A multi-center, randomized, double- blind, parallel, placebo-controlled trial to evaluate the efficacy, safety, and pharmacokinetics of intravenous ibuprofen for the treatment of fever in critically ill and non-critically ill adults. Crit Care. 2010;14(3):r125. http://doi.org/10.1186/cc9089. PMid:20591173.
152. den Hertog HM, van der Worp HB, van Gemert HMA, et al. The Paracetamol (Acetaminophen) in Stroke (PAIS) trial: a multicenter, randomized, placebo-controlled, phase III trial. Lancet Neurol. 2009;8(5):434-40. http://doi.org/10.1016/S1474-4422(09)70051-1. PMid:19297248.
153. Lewis SR, Baker PE, Andrews PJ, et al. Interventions to reduce body temperature to 35 C to 37 C in adults and children with traumatic brain injury. Cochrane Database Syst Rev. 2020;10(10):CD006811. PMid:33126293.
154. Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev. 2005;2005(1):CD000196. PMid:15674869.
155. Wakai Mari A, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev. 2013;2013(8):CD001049. PMid:23918314.
156. Diringer MN, Yundt K, Videen TO, et al. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. J Neurosurg. 2000;92(1):7-13. http:// doi.org/10.3171/jns.2000.92.1.0007. PMid:10616076.
157. Broessner G, Beer R, Lackner P, et al. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease. Stroke. 2009;40(12):e657-65. http://doi. org/10.1161/STROKEAHA.109.557652. PMid:19762706.
158. Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res. 2007;29(7):680-2. http:// doi.org/10.1179/016164107X240071. PMid:18173907.
159. Natteru P, George P, Bell R, Nattanmai P, Newey CR. Central hyperthermia treated with bromocriptine. Case Rep Neurol Med. 2017;2017(1):1712083. PMid:28348904.
160. Huang YS, Hsiao MC, Lee M, Huang YC, Lee JD. Baclofen successfully abolished prolonged central hyperthermia in a patient with basilar artery occlusion. Acta Neurol Taiwan. 2009;18(2):118-22. PMid:19673364.


1Faculty of Medicine, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brazil.

2Neurosurgery Division, Universidade Federal de Sergipe (UFS), Aracaju (SE), Brazil.

3Neurosurgery Division, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brazil.

 

Received June 17, 2024

Accepted June 25, 2024

JBNC  Brazilian Journal of Neurosurgery

JBNC
  •   ISSN (print version): 0103-5118
  •   e-ISSN (online version): 2446-6786
iThenticate
Open Access

Contact

Social Media

   

ABNc  Academia Brasileira de Neurocirurgia

  •   Rua da Quitanda 159 – 10º andar - Centro - CEP 20091-005 - Rio de Janeiro - RJ
  •   +55 21 2233.0323
  •    abnc@abnc.org.br

Sponsor

  • Brain4Care
  • Hospital INC
  • Strattner
  • Zeiss