REVIEW

Electromyographic Motor Outcomes in Short- and Long-Term Recovery of Incomplete Spinal Cord Injury Treated with Neuromodulation Techniques

Desfechos Motores Eletroneuromiográficos na Recuperação de Curto e Longo Prazo de Trauma Raquimedular Incompleto Tratados com Técnicas de Neuromodulação

  • Daniel Buzaglo Gonçalves (1)
  • Maria Eduarda de Oliveira (2)
  • Deborah Araújo Silva (3)
  • Maria Izabel Andrade dos Santos (1)
  • Rynele Almeida de Fonseca (3)
  • Júlio César Claudino dos Santos (4)
  • Robson Luis Oliveira de Amorim (5)
  • Adilson de Oliveira (6)
  Views: 1081
  Downloads: 61

Resumo

A incidência de trauma raquimedular (TRM) nos Estados Unidos varia de 25 a 59 novos casos por milhão de habitantes por ano com uma média de 40 por milhão. A neuromodulação consiste no uso de dispositivos para regular neuralmente os órgãos do corpo para benefício médico. Essas estratégias que fortalecem a atividade neuronal têm mostrado resultados promissores na restauração da função sensório-motora após TRM crônico. Esta revisão foi feita usando a declaração de itens de relatório preferidos para revisões sistemáticas e meta-análises (PRISMA). Uma revisão sistemática de artigos em inglês foi realizada no MEDLINE / PubMed (NLM) e Biblioteca Virtual em Saúde (BVS), os artigos selecionados foram de setembro de 1982 a dezembro de 2020. O MeSH e as palavras-chave utilizadas em ambas as bases de dados foram “neuronal plasticity”, “spinal cord injury” e “neuromodulation”. Quatro estudos foram elegíveis para inclusão, compreendendo 79 pacientes com idade média de 42,67 anos e um homem: mulher de 60:19. Três estudos avaliaram técnicas de neuromodulação que combinavam a estimulação do sistema nervoso central (SNC) e do sistema nervoso periférico (SNP). Um ensaio clínico avaliou o potencial terapêutico da PCMS. Embora o TRM represente uma das principais causas de incapacidade, ainda existem poucos estudos de qualidade que avaliem o impacto dos tratamentos de neuromodulação nessa condição. A maioria (3/4) dos artigos enfocou a combinação da estimulação do SNC e SNP, porém os resultados foram controversos, reafirmando a necessidade de realização de artigos de melhor qualidade. Mais estudos clínicos devem ser realizados a fim de ampliar o conhecimento neste tipo de tratamento em pacientes com TRM.

Palavras-chave

Trauma Raquimedular; Neuromodulação; Neuroplasticidade

Abstract

Spinal cord injury (SCI) incidence in the United States vary from 25 to 59 new cases per million inhabitants in a year with average of 40 per million. Neuromodulation consists in devices to neurally regulate the body’s organs for medical benefit. These strategies that strengthen neuronal activity have shown promising results in restoring sensorimotor function after chronic spinal cord injury (SCI). This review was made using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A systematic review of English articles was conducted using MEDLINE/PubMed (NLM) and Biblioteca Virtual em Saúde (BVS). The selected articles were from September 1982 to December 2020. The MeSH and keywords used in both databases were “neuronal plasticity”, “spinal cord injury”, and “neuromodulation”. Four studies were eligible for inclusion, comprising 79 patients with a mean age 42.67 years and a male:female of 60:19. Three studies evaluated the neuromodulation techniques that combined central nervous system (CNS) and peripheral nervous system (PNS) stimulation. One clinical trial evaluated the PCMS therapeutic potential. Although SCI represents one of the main causes of disability, there are still few quality studies that assess the impact of neuromodulation treatments in this condition. The majority (3/4) of the articles focused in the combination of CNS and PNS stimulation, but the results were controversial, reaffirming the need to perform with better quality articles. More clinical studies should be conducted in order to enhance the knowledge in this type of treatment in SCI patients.

Keywords

Spinal Cord Injury; Neuromodulation; Neuronal Plasticity

References

1. National Spinal Cord Injury Statistical Center. Facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2020.

2. National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2013.

3. National Spinal Cord Injury Statistical Center. Recent trends in causes of spinal cord injury. Birmingham, AL: University of Alabama at Birmingham; 2020.

4. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95(5):986-95.E1. http://dx.doi. org/10.1016/j.apmr.2013.10.032. PMid:24462839.

5. Murray LM, Knikou M. Trans spinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS One. 2019;14(3):e0213696. http://dx.doi.org/10.1371/journal. pone.0213696. PMid:30845251.

6. Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma. 2006;23(3–4):318-34. http:// dx.doi.org/10.1089/neu.2006.23.318. PMid:16629619.

7. Alam M, Rodrigues W, Pham BN, Thakor NV. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: recent progress and future perspectives. Brain Res. 2016;1646:25-33. http://dx.doi.org/10.1016/j.brainres.2016.05.039. PMid:27216571.

8. Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010;121(10):1655-68. http://dx.doi.org/10.1016/j.clinph.2010.01.039. PMid:20427232.

9. James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol. 2018;17(10):905-17. http://dx.doi.org/10.1016/S1474- 4422(18)30287-4. PMid:30264729.

10. Smith AC, Knikou M. A review on locomotor training after spinal cord injury: reorganization of spinal neuronal circuits and recovery of motor function. Neural Plast. 2016;2016:1216258. http://dx.doi. org/10.1155/2016/1216258. PMid:27293901.

11. Hofstoetter US, Knikou M, Guertin PA, Minassian K. Probing the human spinal locomotor circuits by phasic step-induced feedback and by tonic electrical and pharmacological neuromodulation. Curr Pharm Des. 2017;23(12):1805-20. http://dx.doi.org/10.2174/1381612822666 161214144655. PMid:27981912.

12. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care intervention: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. http://dx.doi.org/10.1371/journal.pmed.1000100. PMid:19621070.

13. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12. http://dx.doi.org/10.1016/0197-2456(95)00134-4. PMid:8721797.

14. Murray LM, Knikou M. Trans spinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS One. 2019;14(3):e0213696. http://dx.doi.org/10.1371/journal. pone.0213696. PMid:30845251.

15. Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020;143(5):1368-82. http://dx.doi.org/10.1093/brain/awaa052. PMid:32355959.

16. Versace V, Langthaler PB, Höller Y, et al. Abnormal cortical neuroplasticity induced by paired associative stimulation after traumatic spinal cord injury: A preliminary study. Neurosci Lett. 2018;664:167-71. http://dx.doi.org/10.1016/j.neulet.2017.11.003. PMid:29138092.

17. Dongés SC, Boswell-Ruys CL, Butler JE, Taylor JL. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study. Spinal Cord. 2019;57(9):796-804. http://dx.doi.org/10.1038/s41393- 019-0291-3. PMid:31086274.

18. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572-84. http://dx.doi.org/10.1093/brain/123.3.572. PMid:10686179.

19. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543(Pt 2):699-708. http://dx.doi.org/10.1113/jphysiol.2002.023317. PMid:12205201.



(1)Medical Student, Federal University of Amazonas – UFAM, Manaus, AM, Brazil.

(2) Medical Student, Tiradentes Faculty of Pernambuco, Jaboatão dos Guararapes, PE, Brazil.

(3) Medical Student, University Brazil – UB, Fernandópolis, SP, Brazil.

(4) MD, Professor of Human Anatomy, Christus Universitary Center – UNICHRISTUS, Fortaleza, CE, Brazil.

(5) MD, PhD, Professor of Neurosurgery, Federal University of Amazonas – UFAM, Manaus, AM, Brazil.

(6) MD, Peripheral Nerve Neurosurgeon, Doctoral Student in Neurology, University of Sao Paulo – USP, São Paulo, SP, Brazil.

 

Received Nov 30, 2021
Accepted Feb 22, 2022

JBNC  Brazilian Journal of Neurosurgery

JBNC
  •   ISSN (print version): 0103-5118
  •   e-ISSN (online version): 2446-6786
iThenticate
Open Access

Contact

Social Media

   

ABNc  Academia Brasileira de Neurocirurgia

  •   Rua da Quitanda 159 – 10º andar - Centro - CEP 20091-005 - Rio de Janeiro - RJ
  •   +55 21 2233.0323
  •    abnc@abnc.org.br

Sponsor

  • Brain4Care
  • Hospital INC
  • Strattner
  • Zeiss