REVIEW

Application of Three-Dimensional Printed Tractography in Neurosurgical Planning: a systematic review

Aplicação de Impressão Tridimensional de Tractografia no Planejamento Neurocirúrgico: uma revisão sistemática

  • Gabriela de Paula Abranches (1)
  • Ana Carolina Felipe da Silva (2)
  • Lorena Maria Dering (2)
  • Letícia Gusso Scremin (3)
  • Matheus Kahakura Franco Pedro (4)
  • André Giacomelli Leal (5)
  Views: 969
  Downloads: 56

Resumo

Introdução: A tractografia de substância branca (SB) é um método de neuroimagem que permite a demonstração in vivo de vias do sistema nervoso central através de ressonância magnética por difusão que, recentemente, foi combinada com impressão tridimensional (3D). A ferramenta apresenta um modo potencial de aperfeiçoar o tratamento cirúrgico com melhores resultados, e tem sido mal explorada na prática clínica. A presente revisão sistemática resume as vantagens, as limitações e a potencial aplicação clínica dos modelos impressos da tractografia de SB em 3D. Métodos: Uma pesquisa foi realizada nos bancos de dados PubMed, Cochrane Library e Google Scholar. As publicações em revistas com texto completo e revisadas por pares foram critérios de seleção. Não foram aplicadas restrições de idiomas, regionais ou de dados, e a extração de dados seguiu as diretrizes do PRISMA. Resultados: Dentre os 7 artigos incluídos na revisão sistemática, 6 foram relatos de casos ou casos, sendo apenas uma nota técnica, totalizando 11 pacientes avaliados, todos com tumores cerebrais (4 tumores de lobo frontal, 2 tumores de lobo parietal, 3 tumores de lobo temporal, 2 tumores selares e 1 neuroma acústico). O tumor e as vias de fibras adjacentes foram impressos em todos os estudos, mas apenas 3 fibras nervosas cranianas e 2 vasos sanguíneos foram impressos. Todos os estudos relataram cirurgias bem sucedidas com ressecção total ou tumoral. Todos os estudos foram séries de casos, relatórios de casos ou relatórios técnicos. Conclusão: Uma revisão da literatura atualmente disponível mostrou que, embora promissores, os modelos de impressão 3D de tractografia de SB ainda estão em estágio inicial, e novos estudos são necessários antes de indicar-se o uso fora do contexto de assistente pré-operatório.

Palavras-chave

Tractografia; Impressão tridimensional; Neurocirurgia

Abstract

Background and purpose: White matter tractography (WMT) is a neuroimaging method that allows invivo demonstration of the central nervous system pathways via diffusion magnetic resonance imaging that, recently, has been combined with three-dimensional (3D) printing. The tool presents a potential way to improve surgical treatment with better outcomes, and it has barely been explored in clinical practice. The present review summarizes the advantages, limitations, and potential clinical application of WMT 3D printed models. Methods: A search was performed at PubMed, Cochrane Library, and Google Scholar databases. Full-text, peer-reviewed journal publications were the selection criteria. No language, regional, or data restrictions were applied, and data extraction followed the PRISMA guidelines. Results: Among the 7 articles included in the systematic review, 6 were case series or case reports, and only 1 was a technical note, totaling 11 patients evaluated, all with brain tumors (4 frontal lobe tumors, 2 parietal lobe tumors, 3 temporal lobe tumors, 2 sellar tumors and 1 acoustic neuroma). The tumor and adjacent fiber pathways were printed in all studies, but only 3 cranial nerve fibers and 2 blood vessels were printed. All studies reported successful surgeries with total or subtotal tumor resection. All studies were case series, case reports, or technical reports. Conclusion: A review of the currently available literature showed that although promising, 3D printing models of WMT are still in its early stages, and further studies are needed before indicating the use outside the preoperative assistant modality context.

Keywords

Tractography; Three-dimensional printing; Neurosurgery

References

1. Wende T, Hoffmann KT, Meixensberger J. Tractography in neurosurgery: a systematic review of current applications. J Neurol Surg A Cent Eur Neurosurg. 2020;81(5):442-55. http://dx.doi.org/10.1055/s-0039-1691823. PMid:32176926.

2. Henderson F, Abdullah KG, Verma R, Brem S. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurg Focus. 2020;48(2):E6. http://dx.doi.org/10.3171/2019.11.FOCUS19785. PMid:32006950.

3. Gargiulo P, Árnadóttir Í, Gíslason M, Edmunds K, Ólafsson I. New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng. 2017;2017:1-8. http://dx.doi.org/10.1155/2017/1439643.

4. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow - up outcome of diffusion tensor imaging - based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935-48. http://dx.doi.org/10.1227/01.neu.0000303189.80049.ab. PMid:18091270.

5. Jiménez-Peña MM, Gil-Robles S, Cano-Alonso R, et al. Essential subcortical tracts in language and reading: 3D-tractography for clinical practice and anatomic correlation with intraoperative subcortical electrostimulation. Clin Neuroradiol. 2017;27(1):81-9. http://dx.doi.org/10.1007/s00062-015-0429-4. PMid:26227619.

6. Konakondla S, Brimley CJ, Sublett JM, et al. Multimodality 3D superposition and automated whole brain tractography: comprehensive printing of the functional brain. Cureus. 2017;9(9):e1731. http://dx.doi.org/10.7759/cureus.1731. PMid:29201580.

7. Lin J, Zhou Z, Guan J, et al. Using three-dimensional printing to create individualized cranial nerve models for skull base tumor surgery. World Neurosurg. 2018;120:e142-52. http://dx.doi.org/10.1016/j.wneu.2018.07.236. PMid:30121411.

8. Romero-Garcia R, Erez Y, Oliver G, et al. Practical application of networks in neurosurgery: combined 3-dimensional printing, neuronavigation, and preoperative surgical planning. World Neurosurg. 2020;137:e126-37. http://dx.doi.org/10.1016/j.wneu.2020.01.085. PMid:31958585.

9. Watanabe N, Yamamoto Y, Fujimura S, et al. Utility of multi-material three-dimensional print model in preoperative simulation for glioma surgery. J Clin Neurosci. 2021;93:200-5. http://dx.doi.org/10.1016/j.jocn.2021.09.017. PMid:34656248.

10. Kodama H. Authomatic method for fabricating a three-dimensional plastic moel with photo-hardening polymer. Rev Sci Instrum. 1981;52(11):1770-3. http://dx.doi.org/10.1063/1.1136492.

11. Anderl H, Zur Nedden D, Mühlbauer W, et al. CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plast Surg. 1994;47(1):60-4. http://dx.doi.org/10.1016/0007-1226(94)90121-X. PMid:8124570.

12. Thawani JP, Randazzo M, Pisapia JM, Singh N. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(34, Suppl. 33):801-9. http://dx.doi.org/10.4103/2152-7806.194059. PMid:27920940.

13. Martín-Noguerol T, Paulano-Godino F, Riascos RF, Calabia-del-Campo J, Márquez-Rivas J, Luna A. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med. 2019;7(22):684. http://dx.doi.org/10.21037/atm.2019.10.109. PMid:31930085.

14. Leal AG, Mori YT, Nohama P, Souza MA. Three-dimensional hollow elastic models for intracranial aneurysm clipping election: a case study. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:4137-40. http://dx.doi.org/10.1109/EMBC.2019.8856514.

15. Wang L, Ye X, Hao Q, et al. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J Clin Neurosci. 2018;50(50):77-82. http://dx.doi.org/10.1016/j.jocn.2018.01.074. PMid:29439905.

16. Ishibashi T, Takao H, Suzuki T, et al. Tailor-made shaping of microcatheters using three-dimensional printed vessel models for endovascular coil embolization. Comput Biol Med. 2016;77:59-63. http://dx.doi.org/10.1016/j.compbiomed.2016.07.005. PMid:27521515.

17. Mashiko T, Otani K, Kawano R, et al. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015;83(3):351-61. http://dx.doi.org/10.1016/j.wneu.2013.10.032. PMid:24141000.

18. Wang JL, Yuan ZG, Qian GL, Bao WQ, Jin GL. 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine. 2018;97(24):e11103. http://dx.doi.org/10.1097/MD.0000000000011103. PMid:29901628.

19. Lan Q, Zhu Q, Xu L, Xu T. Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions. World Neurosurg. 2020;134:e761-70. http://dx.doi.org/10.1016/j.wneu.2019.10.191. PMid:31712116.

20. Maroon JC. Skull base surgery: past, present, and future trends. Neurosurg Focus. 2005;19(1):e1-4. http://dx.doi.org/10.3171/foc.2005.19.1.2. PMid:16078812.

21. Park EK, Lim JY, Yun IS, et al. Cranioplasty enhanced by threedimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg. 2016;27(4):943-9. http://dx.doi.org/10.1097/SCS.0000000000002656. PMid:27192643.

22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PMid:33782057.

23. Thawani JP, Singh N, Pisapia JM, et al. Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy. Clin Neurosurg. 2017;80(4):635-45. http://dx.doi.org/10.1093/neuros/nyx009. PMid:28362934.

24. Gomez-Feria J, Narros JL, Ciriza GG, et al. 3D printing of diffuse low-grade gliomas involving eloquent cortical areas and subcortical functional pathways: technical note. World Neurosurg. 2021;147:164-171.e4. http://dx.doi.org/10.1016/j.wneu.2020.12.082. PMid:33359517.

25. Maier-Hein KH, Neher PF, Houde JC, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8(1):1349. http://dx.doi.org/10.1038/s41467-017-01285-x. PMid:29116093.

26. Treiber JM, White NS, Steed TC, et al. Characterization and correctio of geometric distortions in 814 Diffusion Weighted Images. PLoS One. 2016;11(3):e0152472. http://dx.doi.org/10.1371/journal.pone.0152472. PMid:27027775.

27. Lima JJP. Técnicas de diagnóstico com raios X: aspectos físicos e biofísicos. Coimbra: Universidade de Coimbra; 2009.

28. Leclercq D, Delmaire C, Menjot de Champfleur N, Chiras J, Lehéricy S. Diffusion tractography: Methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am. 2011;22(2):253-68, ix. http://dx.doi.org/10.1016/j.nec.2010.11.004. PMid:21435575.

29. Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 2008;7(8):715-27. http://dx.doi.org/10.1016/S1474-4422(08)70163-7. PMid:18635020.

30. Oh ME, Driever PH, Khajuria RK, et al. DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors. J Neurooncol. 2017;131(2):267-76. http://dx.doi.org/10.1007/s11060-016-2290-y. PMid:27785688.

31. Ghinda D, Zhang N, Lu J, Yao CJ, Yuan S, Wu JS. Contribution of combined intraoperative electrophysiological investigation with 3-T intraoperative MRI for awake cerebral glioma surgery: comprehensive review of the clinical implications and radiological outcomes. Neurosurg Focus. 2016;40(3):e14. http://dx.doi.org/10.3171/2015.12.FOCUS15572. PMid:26926054.

32. Lin YC, Wang CC, Wai YY, et al. Significant temporal evolution of diffusion anisotropy for evaluating early response to radiosurgery in patients with vestibular schwannoma: findings from functional diffusion maps. AJNR Am J Neuroradiol. 2010;31(2):269-74. http://dx.doi.org/10.3174/ajnr.A1799. PMid:19779002.

33. Lethaus B, Poort L, Böckmann R, Smeets R, Tolba R, Kessler P. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Craniomaxillofac Surg. 2012;40(1):43-6. http://dx.doi.org/10.1016/j.jcms.2011.01.007. PMid:21296586.


1 Medical student, Multivix University Center, Vitória, ES, Brazil.

2 Biomedical scientist, Neurological Institute of Curitiba, Curitiba, PR, Brazil.

3 Medical student, Positivo University, Curitiba, PR, Brazil.

4 MD, MSc, Neurologist, Department of Neurology, Neurological Institute of Curitiba, Curitiba, PR, Brazil.

5 MD, PhD, Neurosurgeon, Department of Neurosurgery, Neurological Institute of Curitiba, Curitiba, PR, Brazil.

 

Received Oct 8, 2022
Accepted Nov 6, 2022

JBNC  Brazilian Journal of Neurosurgery

  •   ISSN (print version): 0103-5118
  •   e-ISSN (online version): 2446-6786

Contact

Social Media

   

ABNc  Academia Brasileira de Neurocirurgia

  •   Rua da Quitanda 159 – 10º andar - Centro - CEP 20091-005 - Rio de Janeiro - RJ
  •   +55 21 2233.0323
  •    abnc@abnc.org.br

Sponsor

  • Brain4Care
  • Hospital INC
  • Strattner